Folding in the Cell - Ions, Crowders, Osmolytes
نویسندگان
چکیده
منابع مشابه
Markov modeling of peptide folding in the presence of protein crowders.
We use Markov state models (MSMs) to analyze the dynamics of a β-hairpin-forming peptide in Monte Carlo (MC) simulations with interacting protein crowders, for two different types of crowder proteins [bovine pancreatic trypsin inhibitor (BPTI) and GB1]. In these systems, at the temperature used, the peptide can be folded or unfolded and bound or unbound to crowder molecules. Four or five major ...
متن کاملEffects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis.
To mimic what might happen in cells exposed to hypertonicity, the effects of increased osmolarity and ionic strength on cell-free protein synthesis have been examined. Translation of globin mRNA by rabbit reticulocyte lysate decreased by 30-60% when osmolality was increased from 0.35 to 0.53 osmol/kg of water by the addition of NaCl, KCl, CH(3)CO(2)Na or CH(3)CO(2)K. In contrast, equivalent add...
متن کاملSoft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding.
Living cells contain diverse biopolymers, creating a heterogeneous crowding environment, the impact of which on RNA folding is poorly understood. Here, we have used single-molecule fluorescence resonance energy transfer to monitor tertiary structure formation of the hairpin ribozyme as a model to probe the effects of polyethylene glycol and yeast cell extract as crowding agents. As expected, po...
متن کاملMetal ions in ribozyme folding and catalysis.
Current research is reshaping basic theories regarding the roles of metal ions in ribozyme function. No longer viewed as strict metalloenzymes, some ribozymes can access alternative catalytic mechanisms depending on the identity and availability of metal ions. Similarly, reaction conditions can allow different folding pathways to predominate, with divalent cations sometimes playing opposing roles.
متن کاملEffects of osmolytes and macromolecular crowders on stable GAAA tetraloops and their preference for a CG closing base pair
Osmolytes and macromolecular crowders have the potential to influence the stability of secondary structure motifs and alter preferences for conserved nucleic acid sequences in vivo. To further understand the cellular function of RNA we observed the effects of a model osmolyte, polyethylene glycol (PEG) 200, and a model macromolecular crowding agent, PEG 8000, on the GAAA tetraloop motif. GAAA t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2017
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.11.044